skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahn, Dowon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Membrane technology has become a promising solution for a wide range of separation processes, including wastewater treatment, solvent recovery, and oil–water separation, due to its low energy consumption, cost-effectiveness, and minimal space needs. However, membrane damage caused by suspended pollutants or improper handling remains a challenge, often leading to decreased filtration capability and the need for replacement of membrane modules. Self-repairing membranes have emerged as a new solution, with various materials demonstrating autonomous healing properties through dynamic bonds such as hydrogen bonds or boronic ester bonds. However, many of these self-repairing membranes suffer from excessive swelling in water, compromising their mechanical stability. Herein, we report a self-repairing and low-swelling polymer network based on dopamine acrylamide (DA) and n-butyl acrylate (BA), crosslinked with p-phenylenediboronic acid (PDBA). The boronic ester bond formation between catechol and boronic acid groups confers self-healing properties to the polymer, while the hydrophobic nature of BA minimizes swelling in water. The polymer exhibits a low swelling ratio of 2.1% after 7 days of submersion in water. A cellulose-based filter paper coated with the polymer demonstrated that it can recover its water flux up to 91% after repairing damage. Lastly, an ultrafiltration polyethersulfone (PES)-based filter coated with the polymer demonstrated that it recovers its solute rejection capability after repairing damage. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract With 3D printing, the desire is to be “limited only by imagination,” and although remarkable advancements have been made in recent years, the scope of printable materials remains narrow compared to other forms of manufacturing. Light‐driven polymerization methods for 3D printing are particularly attractive due to unparalleled speed and resolution, yet the reliance on high‐energy UV/violet light in contemporary processes limits the number of compatible materials due to pervasive absorption, scattering, and degradation at these short wavelengths. Such issues can be addressed with visible‐light photopolymerizations. However, these lower‐energy methods often suffer from slow reaction times and sensitivity to oxygen, precluding their utility in 3D printing processes that require rapid hardening (curing) to maximize build speed and resolution. Herein, multifunctional thiols are identified as simple additives to enable rapid high‐resolution visible‐light 3D printing under ambient (atmospheric O2) conditions that rival modern UV/violet‐based technology. The present process is universal, providing access to commercially relevant acrylic resins with a range of disparate mechanical responses from strong and stiff to soft and extensible. Pushing forward, the insight presented within this study will inform the development of next‐generation 3D‐printing materials, such as multicomponent hydrogels and composites. 
    more » « less